Macroscopic, Microscopic, and Paleo-depositional Features of selected Coals in Arahan, Banjarsari, Subanjeriji, and South Banko Regions, South Sumatra

Nana Suwarna, Y. Kusumahbrata


DOI: 10.17014/ijog.v5i4.110

The Arahan, Banjarsari, Subanjeriji, and Banko Regions, parts of the Bukit Asam coalfield, is situated in the Lematang Depression of South Palembang Sub-basin, South Sumatera Basin. Twenty two fresh outcrop and subcrop samples of Seam B, A, Benuang, Enim, and Jelawatan of the Mio-Pliocene Muaraenim coals have been analyzed macroscopically and microscopically, to assess the characteristics and depositional environment of the coal present. On the basis of lithotype analysis, accompanied by organic-petrological and SEM analyses, the coal seams of the Muaraenim Formation show variations in the predominance of some macerals, indicating successions of environmental changes. Petrographically, the dominant maceral group is vitrinite, present in high to very high values (69.4 – 97.4 %); whilst the minor one is inertinite showing a low to moderate amount (0.4 – 22.0 %), followed by low to moderate value of exinite (0.4 – 18.2 %). Vitrinite reflectance values are present in a low to moderate level, varying from 0.34 to 0.55 %, with one sample showing value of 0.59 %. Mineral matter dominated by clay minerals, with minor pyrite and carbonate, displays a low degree (0.4 – 5.4 %), with one sample of 12.0 %. Organic facies study tends to indicate that the coals were deposited in a wet forest swamp to limnic zone, within lower delta plain to transgressive area. This condition has supported the depositional setting interpreted from sedimentary facies associations that shows a shallow-water continental margin sequence, varying from a fluvial to deltaic environment. The organic facies concept is thus applicable in basin studies context and has potential to become an additional tool for interpretation of depositional environment.


coal; features; paleo-depositional; Bukit Asam coalfield; South Sumatra


American Society for Testing and Materials (ASTM) Standard, 2009. Standard Test Method for Microscopical Determination of Vitrinite Reflectance of Coal (D 2798 – 09) and Standard Test Method for Microscopical Determination of the Maceral Composition of Coal (D 2799 – 05a). In: Annual Book of ASTM Standards 2009: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels, Coal and Coke. Section 5, 05.06. ASTM International, West Conshohocken, PA 19428 – 2959.

Belkin, H.E., Tewalt, S.J., Hower, J.C., Stucker, J.D., and O’Keefe, J.M.K., 2009. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 77, p.260-268. DOI:10.1016/j.coal.2008.08.001

Brown, H.R., Cook, A.C., and Taylor, G.H., 1964. Variation in the properties of vitrinite in isometamorphic coal. Fuel, 43, p.111-124.

Bustin, R.M., Cameron, A.R., Grive, A.D., and Kalkreuth, W.D., 1983. Coal Petrology-its principles, methods, and applications. Geological Association of Canada, 230p.

Calder, J.H., Gibling, M.R., and Mukhopadhyay, P.K., 1991. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implication for the maceral-based, interpretation of rheotrophic and raised paleomires. Bulletin of Society of Geology, France, 2, p.283-298.

Cameron, A.R., 1978. Megascopic description of coal with particular reference to seams in southern Illinois. In: Dutcher, R.R. (Ed.), Field description of coal. ASTM Special Technical Publication, 661, p.33-40. DOI:10.1520/STP35763S

Casagrande, D.J., 1987. Sulphur in peat and coal. In: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent Advances. United Kingdom Geological Society Special Publication, 32, Blackwell, Oxford, p.87-105. DOI:10.1144/GSL.SP.1987.032.01.07

Cohen, A.D. and Spackman, W., 1972. Method of peat petrology and their application to reconstruction of paleo-environments. Geological Society of America, Bulletin, 83, p.129-142. DOI:10.1130/0016-7606(1972)83[129:MIPPAT]2.0.CO;2

Cohen, A.D., Spackman, W., and Raymond, R., 1987. Interpreting the characteristics of coal seams from chemical, physical, and petrographic studies of peat deposits. In: Scott, A.C. (ed.), Coal and Coal-bearing Strata: Recent Advances. Geological Society (London) Special Publication, 32, p.107 – 125. DOI:10.1144/GSL.SP.1987.032.01.08

Cook, A.C. and Kantsler, A.J., 1982. The origin and petrology of organic matter in coals, oil shales and petroleum source-rocks. The University of Wollongong, Wollongong, New South Wales, 35p.

Daulay, B. and Cook, A.C., 1988. The petrology of some Indonesian coals. Journal of Southeast Asian Earth Sciences, 2 (2), p.45-64.

Davies, R., Diessel, C.F.K., Howell, J., Flint, S., and Boyd, R., 2005. Vertical and lateral variation in the petrography of the Upper Cretaceous Sunnyside Coal of eastern Utah, USA: implications for the recognition or high-resolution accomodation changes in paralic coal seams. International Journal of Coal Geology, 61, p.13-33. DOI:10.1016/j.coal.2004.06.003

De Coster, G.L., 1974. The geology of central and south Sumatra basins. Proceedings of Indonesian Petroleum Association, 3rd Annual Convention, p.77-110.

Diessel, C.F.K., 1965. Correlation of macro and micropetrography of some New South Wales coals. In: Woodcock, J.T., Madigan, R.T., and Thomas, R.G. (Eds.), Proceedings-general, vol 6, 8th Commonwealth Mineral and Metallurgy Congress, Melbourne, p.669 – 677.

Diessel, C. F. K., 1986. On the correlation between coal facies and depositional environment. Advances in the Study of the Sydney Basin. Proceedings 20th Symposium of Department Geology, University of New Castle, 246, p19-22.

Diessel, C.F.K., 1992. Coal Bearing Depositional Systems. Springer-Verlag, Berlin, 721pp.

Gafoer, S., Cobrie, T., and Purnomo, J., 1986. Geological Map of the Lahat Quadrangle, South Sumatra, scale 1:250.000. Geological Research and Development Centre, Bandung.

Hackley, P.C., Warwick, P.D., and Gonzales, E., 2005. Petrology, mineralogy, and geochemistry of mined coals, western Venezuela. International Journal of Coal Geology, 63, p.68-97. DOI:10.1016/j.coal.2005.02.006

Hackley, P.C. and Martinez, M., 2007. Organic petrology of Paleocene Marcelina Formation coals, Paso Diablo mine, western Venezuela: Tectonic controls on coal type. International Journal of Coal Geology, 71, p.505-526. DOI:10.1016/j.coal.2006.05.002

Hagemann, H.W.,1978. Macropetrographic classification of brown coal. Unpublished Proposal Presented to members of the International Committee for Coal Petrology (ICCP), Essen, Germany.

Harvey, R.D. and Dillon, J.W., 1985. Maceral distribution in Illinois coals and their palaeoenvironmental implications. International Journal of Coal Geology, 5, p.141-165. DOI:10.1016/0166-5162(85)90012-6

Horne, J.C., Ferm, J.C., Caruccio, F.T., and Baganz, B.P., 1978. Depositional Models in Coal Exploration and Mine Planning in Appalachian Region. American Association of Petroleum Geologists Bulletin, 62 (12), p. 2379-2411.

Hunt, J.W. and Smyth, M., 1989. Origin of inertinite-rich Gondwana coals in Australian cratonic basins. International Journal of Coal Geology, 1, p.23-46. DOI:10.1016/0166-5162(89)90111-0

Hower, J.C. and Wild, G.D., 1982. Petrographic variation in the Springfield (No.9) Coal in western Kentucky. International Journal of Coal Geology, 2, p. 17-30. DOI:10.1016/0166-5162(82)90013-1

Hunt, J.W. and Hobday, D.K., 1984. Petrographic composition and sulphur contents of coals associated with alluvial fans in the Permian Sydney and Gunnedah Basins, Eastern Australia. In: Rahmani, R.A. and Flore, R.M. (Eds.), Sedimentology of coal and coal-bearing sequence. International Association of Sedimentologists, Special Publication, 7, p.43-60. DOI:10.1002/9781444303797.ch3

ICCP, International Committee for Coal Petrology, 1963. Handbook, 2nd Edition, Centre National de la Recherche Scientifique, Paris, France.

ICCP, International Committee for Coal Petrology, 1971. International Handbook of Coal Petrology, 1st supplement to 2nd Edition, Centre National de la Recherche Scientifique, Paris, France.

ICCP, International Committee for Coal Petrology, 1975. Analysis subcommission, fluorescence photometry and subcomission nomenclature. In: International Handbook of Coal Petrography, 2nd Supplement to 2nd Edition. Centre National de la Recherche Scientifique, Paris, France.

ICCP, International Committee for Coal Petrology, 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77, p.349-358. DOI:10.1016/S0016-2361(98)80024-0

ICCP, International Committee for Coal Petrology, 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, p.459-471. DOI:10.1016/S0016-2361(00)00102-2

ISO, 1994. Methods for the Petrographic Analysis of Coal. Part 3: Method of Determining Maceral Group Composition, 7404-3. International Organization for Standardization Standard, p.6.

Jelonek, I., Kruszewska, K.J., and Filipiak, P., 2007. Liptinite as an indicator of environmental changes during formation of coal seam No. 207 (Upper Silesia, Poland). International Journal of Coal Geology, 71, p.471-487. DOI:10.1016/j.coal.2006.10.003

Kalkreuth, W.D., Marchiono, D.L., Calder, J.H., Lamberson, M.N., Naylor, R.D., and Paul, J., 1991. The relationship between coal petrography and depositional environments from selected coal basins in Canada. In: Kalkreuth, W.D., Bustin, R.M., and Cameron, A.R. (Eds.), Recent Advances in Organic Petrology and Geochemistry: A Symposium Honouring Dr. P. Hacquebard. International Journal of Coal Geology, 19, p.21-76. DOI:10.1016/0166-5162(91)90014-A

Lamberson, M.N., Bustin, R.M., and Kalkreuth, W., 1991. Lithotype (maceral) composition and variation as correlated with paleo-wetland environment, Gates Formation, Northeastern British Columbia, Canada. International of Coal Geology, 18, p.87-124. DOI:10.1016/0166-5162(91)90045-K

Mackowsky, M.Th., 1982. Minerals and trace elements occurring in coal. In: Stach, E., Mackowsky, M.Th., Teichmuller, M., Taylor, G.H., Chandra, D., and Teichmuller, R. (Eds.) Stach’s Textbook of Coal Petrology, Berlin, 3rd Edition, p.153-171.

Marchioni, D.L., 1980. Petrography and depositional environment of the Liddell seam, Upper Hunter Valley, New South Wales. International Journal of Coal Geology, 1, p.35-61. DOI:10.1016/0166-5162(80)90005-1

Marchioni, D.L. and Kalkreuth, W., 1991. Coal facies interpretations based on lithotype and maceral variations in Lower Cretaceous (Gates Formation) coal of Western Canada. International Journal of Coal Geology, 18, p.125-162. DOI:10.1016/0166-5162(91)90046-L

McCabe, P.J., 1984. Depositional environments of coal and coal bearing strata, In: Rahmani, R.A. and Flores, R.M. (Eds.), Sedimentology of coal and coal-bearing sequences, Special Publications of International Association of Sedimentologists, 7, p13-42. DOI:10.1002/9781444303797.ch2

McCabe, P.J., 1987. Facies studies of coal and coal-bearing strata. In: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent Advances, Special Publication Geological Society, London, 32, p.51-66. DOI:10.1144/GSL.SP.1987.032.01.05

Mishra, H.K., Chandra, T.K., and Verma, R.P., 1990. Petrology of some Permian coals of India. International Journal of Coal Geology, 16, p.47-71. DOI:10.1016/0166-5162(90)90013-O

Moore, T.A. and Shearer, J.C., 2003. Peat/coal type and depositional environment - are they related. International Journal of Coal Geology, 56, p.233-252. DOI:10.1016/S0166-5162(03)00114-9

PT. Morrison Knudsen Indonesia (MKI), 1998. Feasibility Study Phase I/II Report. PT Tambang Batubara Bukit Asam Banjarsari Project, Tanjung Enim, South Sumatra, Indonesia.

Rimmer, S. and Davis, A., 1988. The influence of depositional environments on coal petrographic composition of the Lower Kittaning Seam, western Pennsylvania. Organic Geochemistry, 12, p.375-387. DOI:10.1016/0146-6380(88)90011-3

Sappal, K.K., 1986. Petrography of Collie Coal, Collie Basin, Western Australia. WAMPRI, 26, 202p.

Schopf, J.M., 1960. Field description and sampling of coal beds. U.S. Geological Survey Bulletin, 1111 (B), 70pp.

Scott, A.C., 2002. Coal petrology and the origin of coal macerals: a way ahead? International Journal of Coal Geology, 50, p.119-134. DOI:10.1016/S0166-5162(02)00116-7

Shearer, J.C. and Moore, T.A., 1994. Grain size and botanical analysis of two coal beds from the South Island of New Zealand. Review on Paleobotany and Palynology. DOI:10.1016/0034-6667(94)90095-7

Singh, P.K., Singh, M.P., Singh, A.K., and Arora, M., 2010. Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia. International Journal of Coal Geology, 81, p.109-116. DOI:10.1016/j.coal.2009.11.006

Stach, E., Mackowsky, M-Th., Teichmuller, M., Taylor, G.H., Chandra, D., and Teichmuller, R., 1982. Stach’s Textbook of Coal Petrology. Gebruder Borntraeger, berlin-Stuttgart, 535pp.

Standard Association of Australia, 1977. Code of practice for preparation of hard coal samples for microscopical examination by reflected lights, AS 2061. Sydney, Australia.

Standard Association of Australia, 1981. Microscopical determination of the reflectance of coal macerals, AS 2486. Sydney, Australia.

Standard Association of Australia, 1986. Symbol for the Graphical Representation of Coal Seams, AS 2916-1986. Sydney, Australia.

Stopes, M.C., 1919. On the four visible ingredients in banded bituminous coal. Proceedings of Royal Society, London, B, p.478-487. DOI:10.1098/rspb.1919.0006

Stopes, M.C., 1935. On the petrology of banded bituminous coal. Fuel, 14, p.4-13.

Stout, S.A. and Spackman, W., 1989. Peatification and early coalification of wood as deduced by quantitative microscopic methods. Organic Geochemistry, 14, p.285-298. DOI:10.1016/0146-6380(89)90056-9

Struckmeyer, H.I.M. and Felton, E.A., 1990. The use of organic facies for refining palaeoenvironmental interpretations. A case study from the Otway Basin, Australia. Australian Journal of Earth Sciences, 37, p.351-364. DOI:10.1080/08120099008727932

Styan,W.B. and Bustin, R.M., 1983. Sedimentology of some Fraser River delta peat deposits: a modern analogue for some deltaic coals. International Journal of Coal Geology, 3, p.101-143. DOI:10.1016/0166-5162(83)90006-X

Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., and Robert, P., 1998. Organic Petrology. Gebruder Borntraeger, Berlin.

Teichmüller, M., 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12, p1-87. DOI:10.1016/0166-5162(89)90047-5

Teichmüller, M. and Teichmüller, R., 1982. The geological basis of coal formation. In: Stach, E., Mackowski, M.Th., Teichmuller, M., Taylor, G.H., Chandra, D., and Teichmuller, R. (Eds.), Stach’s Book of Coal Petrography, 3rd Ed., Gebruder Borntraeger, Berlin, 518pp.

Thomas, L., 2002. Coal Geology. John Willey & Sons, Ltd. The Atrium Southern Gate, Chichester, England, 384 pp.

Toprak, S., 2009. Petrographic properties of major coal seams in Turkey and their formation. International Journal of Coal Geology, 78, p.263-275. DOI:10.1016/j.coal.2009.03.006

Ward, C.R., 1984. Coal Geology and Coal Technology. Blackwell Scientific Publication, 352 pp. DOI:10.1002/gj.3350210212

Widodo, S., Oschmann, W., Bechtel, A., Sachsenhofer, R.F., Anggayana, K., and Puettmann, W., 2010. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental condition. International Journal of Coal Geology, 81, p.151-162. DOI:10.1016/j.coal.2009.12.003

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
Indonesian Journal on Geoscience by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Indexing Site :




Follow us on:

shopify visitor statistics
View My Stats