Maceral Characteristics and Vitrinite Reflectance Variation of The High Rank Coals, South Walker Creek, Bowen Basin, Australia

Asep K. Permana, C. R. Ward, L. W. Gurba


DOI: 10.17014/ijog.v8i2.156

The Permian coals of the South Walker Creek area, with a vitrinite reflectance (Rvmax) of 1.7 to 1.95% (low-volatile bituminous to semi-anthracite), are one of the highest rank coals currently mined in the Bowen Basin for the pulverized coal injection (PCI) market. Studies of petrology of this coal seam have identified that the maceral composition of the coals are dominated by inertinite with lesser vitrinite, and only minor amounts of liptinite. Clay minerals, quartz, and carbonates can be seen under the optical microscope. The mineral matter occurs in association with vitrinite and inertinite macerals as syngenetic and epigenetic mineral phases. The irregular pattern of the vitrinite reflectance profile from the top to the bottom of the seam may represent a response in the organic matter to an uneven heat distribution from such hydrothermal influence. Examination of the maceral and vitrinite reflectance characteristics suggest that the mineralogical variation within the coal seam at South Walker Creek may have been controlled by various geological processes, including sediment input into the peat swamp during deposition, mineralogical changes associated with the rank advance process or metamorphism, and/or hydrothermal effects due to post depositional fluid migration through the coal seam.


maceral characteristics; vitrinite reflectance; South Walker Creek coals; Bowen Basin


Australian Standard, 1998. Coal petrography. Part 2: Maceral analysis. AS 2856-2, 32pp.

Australian Standard, 2000. Coal petrography-methods for microscopical determinations of the reflectance of coal macerals. AS 2856-3, 16pp.

Biggs, M.S., 1996. The distribution and significance of iron minerals in the Callide Coal Measures, East Central Queensland. Queensland University of Technology.

Boardman, E.L., 1989. Coal measures (Namurian and Westphalian) Blackband Iron Formations: fossil bog iron ores. Sedimentology, 36, p.621-63. doi:10.1111/j.1365-3091.1989.tb02089.x

Davis, A., 1978. The reflectance of coal. In: Karr, C.J. (Ed.), Analytical method for coal and coal product I. Academic Press, New York, p.27-81. doi:10.1016/B978-0-12-399901-6.50008-6

Davis, B., Esterle, J., and Keilar, 2006. Determining geological controls on the spatial distribution of phosphorus within coal seams mined at South Walker Creek Mine, Bowen Basin, Central Queensland, Australia. In: Hutton, A. and Grifin, J. (Eds.), Advances in the study of the Sydney Basin. Proceedings of the 36th symposium on Advances in the study of the Sydney Basin, p.28-35.

Diessel, C.F.K., 1992. Coal-bearing depositional systems. Springer-Verlag, Berlin, 721 pp. doi:10.1007/978-3-642-75668-9

Foscolos, A.E., Powell, T. G., and Gunther, P.R., 1976. The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochimica et Cosmochimica, Acta, 40, p.953-966. doi:10.1016/0016-7037(76)90144-7

Fraser, S., Esterle, J.S., Ward, C.R., Henwood, R., Mason, P., Huntington, J., Connor, P., Sliwa, R., Coward, D., and Whitbourn, L., 2006. Automated Mineralogical Logging of Coal and Coal Measure Core. End of Grant Report, ACARP Project C13014, CSIRO Exploration and Mining Report P2005/281, p.112.

Glikson, M., Boreham, C.J., and Thiede, D.S., 1999. Coal composition and mode of maturation, a determining factor in quantifying hydrocarbon species generated. In: Masterlarz, M. and Golding, S. (Eds.), Coalbed Methane: Scientific and Economic Evaluation, Kluwer Academic Publisher, Dordrecht, p.155-185. doi:10.1007/978-94-017-1062-6_11

Glikson, M., Golding, S.D., Boreham, C.J., and Saxby, J.D., 2000. Mineralization in eastern Australia coals: a function of oil generation and primary migration. In: Glikson, M. and Mastalerz, M. (Eds.), Organic matter and mineralization. Kluwer Acaedmic Publisher, p. 329-358. doi:10.1007/978-94-015-9474-5_16

Golding, S.D., Collerson, K.D., Uysal, I.T., Glikson, M., Baublys, K., and Zhao, J.X., 2000. Nature and source carbonate mineralization in Bowen Basin coals, Eastern Australia. In: Glikson, M. and Mastalerz, M. (Eds.), Organic matter and mineralization. Kluwer Acaedmic Publisher, p.296-313. doi:10.1007/978-94-015-9474-5_14

Kisch, H.J., 1966. Chlorite-illite tonstein in high rank coals from Queensland, Australia. Notes on regional epigenetic grade and coal rank. American Journal of Science, 264, p.264-397. doi:10.2475/ajs.264.5.386

Kubler, B., 1967. La cristallinite´ de l’illite et les zones tout a fait superieures du metamorphisme. In: Etages tectoniques Colloque de Neuchatel 1966, p.105–121.

Universite Neuchatel, A La Baconniere, Neuchaˆ tel. Middleton, H.A. and Nelson, C.S., 1996. Origin and Timing of siderite and calcite concretions in late Paleogene nonto marginal-marine facies pf the Te Kuiti Group, New Zealand. Sedimentary Geology, 103, p.93-115. doi:10.1016/0037-0738(95)00092-5

Moore, T.A., Shearer, J.C., and Miller, S.L., 1996. Fungal origin of oxidised plant material in the Palangkaraya peat deposit. Kalimantan Tengah, Indonesia: Implication for “inertinite” formation in coal. International Journal of Coal Geology, 30, p.1-23. doi:10.1016/0166-5162(95)00040-2

Permana, A.K., 2011. Mineralogical variation and changes in the South Walker Creek coals, Bowen Basin, Queensland, Australia. M.Sc. Thesis (unpublished), University of New South Wales, Australia, 276 pp.

Permana, A.K., Ward, C.R., Li, Z., Gurba, L.W., and Davison, S., 2010. Mineral matter in the high rank coals of the South Walker Creek area, northern Bowen Basin. In: Beeston, J.W. (Ed.), Proceedings of Bowen Basin Symposium - Back in (the) Black, Geological Society of Australia Coal Geology Group and Bowen Basin Geologists Group, Mackay, Queensland, p.27-34.

Permana, A.K., Ward, C.R., Li, Z., and Gurba, L.W., 2013. Lithotype and Chemical Characteristics of the South Walker Creek Coals, Bowen Basin, Australia. Journal of Geological Resources, 23 (1), p.47-57.

Simoneit, B.R.T., 1994. Organic alteration and fluid migration in hydrothermal systems. Geological Society Publication, 87, p.261-274. doi:10.1144/GSL.SP.1994.078.01.18

Srodon, J., 1979. Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin. In: Mortland, M.M. and Farmer, V.C. (Eds.), Proceedings, Initial Clay Conference, Oxford 1978, p.251-260. doi:10.1016/S0070-4571(08)70721-0

Susilawati, R. and Ward, C.R., 2006. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia. International Journal of Coal Geology, 68, p.171-195. doi:10.1016/j.coal.2006.02.003

Uysal, I.T., Glikson, M., Golding, S.D., and Audsley, F., 2000a. The thermal history of the Bowen Basin, Queensland, Australia: vitrinite reflectance and clay mineralogy of late Permian Coal Measures. Tectonophysics, 323 (1–2), p.105-129. doi:10.1016/S0040-1951(00)00098-6

Uysal, I.T., Golding, S.D., and Audsley, F., 2000b. Clay mineral authigenesis in the Late Permian Coal Measures, Bowen Basin, Queensland, Australia. Clays and Clay Minerals, 48, p.351-365. doi:10.1346/ccmn.2000.0480306

Uysal, I.T., Golding, S.D., and Glikson, M., 2000c. Petrographic and isotope constraints on the origin of authigenic carbonate minerals and the associated fluid evolution in Late Permian coal measures, Bowen Basin (Queensland), Australia. Sedimentary Geology, 136, p.189 - 206. doi:10.1016/S0037-0738(00)00097-X

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
Indonesian Journal on Geoscience by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Indexing Site :




Follow us on:

shopify visitor statistics
View My Stats