Advanced Applications of Synthetic Aperture Radar (SAR) Remote Sensing for Detecting Pre- and Syn-eruption Signatures at Mount Sinabung, North Sumatra, Indonesia

Asep Saepuloh, Prima Rizky Mirelva, Ketut Wikantika



Mount Sinabung was re-activated at August 28th, 2010 after a long repose interval. The early stage of a phreatic eruption was then followed by magmatic eruptions at September 15th, 2013 for years until now. To understand the ground surface changes accompanying the eruption periods, comprehensive analyses of surface and subsurface data are necessary, especially the condition in pre- and syn-eruption periods. This study is raised to identify ground surface and topographical changes before, intra, and after the eruption periods by analyzing the temporal signature of surface roughness, moisture, and deformation derived from Synthetic Aperture Radar (SAR) data. The time series of SAR backscattering intensity were analyzed prior to and after the early eruption periods to know the lateral ground surface changes including estimated lava dome roughness and surface moisture. Meanwhile, the atmospherically corrected Differential Interferometric SAR (D-InSAR) method was also applied to know the vertical topographical changes prior to the eruptions. The atmospheric correction based on modified Referenced Linear Correlation (mRLC) was applied to each D-InSAR pair to exclude the atmospheric phase delay from the deformation signal. The changes of surface moistures on syn-eruptions were estimated by calculating dielectric constant from SAR polarimetric mode following Dubois model. Twenty-one Phased Array type L-band SAR (PALSAR) data on board Advanced Land Observing Satellite (ALOS) and nine Sentinel-1A SAR data were used in this study with the acquisition date between February 2006 and February 2017. For D-InSAR purposes, the ALOS PALSAR data were paired to generate twenty interferograms. Based on the D-InSAR deformation, three times inflation-deflation periods were observed prior to the early eruption at August 28th 2010. The first and second inflation-deflation periods at the end of 2008 and middle 2009 presented migration of magma batches and dike generations in the deep reservoir. The third inflation-deflation periods in the middle of 2010 served as a precursor signal presenting magma feeding to the shallow reservoir. The summit was inflated about 1.4 cm and followed by the eruptions. The deflation of about 2.3 cm indicated the release pressure and temperature in the shallow reservoir after the early eruption at August 28th, 2010. The last inflation-deflation period was also confirmed by the increase of the lava dome roughness size from 5,121 m2 on July to 6,584 m2 on August. The summit then inflated again about 1.1 cm after the first eruption and followed by unrest periods presented by lava dome growth and destruction at September 15th, 2013. The volcanic products including lava and pyroclastics strongly affected the moisture of surface layer. The volcanic products were observed to reduce the surface moisture within syn-eruption periods. The hot materials are presumed responsible for the evaporation of the surface moisture as well.


ALOS PALSAR; Sentinel-1A; D-InSAR; surface moisture; Mt. Sinabung


BKSPN, 2009. Peta Rupa Bumi Indonesia skala 1:50.000. Bakosurtanal.

Bodnar, R.J., Cannatelli, C., De Vivo, B., Lima, A., Belkin, H.E., and Milia, A., 2007. Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: Implications for future eruptions. Geology, 35, p. 791-794. DOI:10.1130/g23653a.1

Box, J.E., Sletten, W.H., Kyle, J.H., and Pope, A., 1963. Effects of soil moisture, temperature, and fertility on yield and quality of irrigated potatoes in the Southern Plains. Agronomy Journal, 55, p.492-494. DOI:10.2134/agronj1963.00021962005500050025x

Campbell, B.A. and Garvin, J.B., 1993. Lava flow topographic measurements for radar data interpretation. Geophysical Research Letters, 20, p.831-834. DOI:10.1029/93gl00737

Chaussard, E. and Amelung, F., 2012. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophysical Research Letters, 39(L21311),p.1-6. DOI:10.1029/2012gl053817

Cronin, S.J., Hedley, M.J., Neall, V.E., and Smith, R.G., 1998. Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand. Environmental Geology, 34, p.21-30. DOI:10.1007/s002540050253

De Roo, R.D., Du, Y., Ulaby, F.T., and Dobson, M.C., 2001. A semi empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Transactions on Geoscience and Remote Sensing, 39, p.864-872. DOI:10.1109/36.917912

Dubois, P.C., Van Zyl, J., and Engman, T., 1995. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33, p.915-926. DOI:10.1109/36.406677

Einarsson, P. and Brandsdottir, B., 1978. Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla volcano in NE-Iceland. University of Iceland, Reykjavik, IS. DOI:10.2172/890964

Gharechelou, S., Tateishi, R., and Sumantyo, J.T.S., 2015. Interrelationship analysis of Lband backscattering intensity and soil dielectric constant for soil moisture retrieval using PALSAR data. Advances in Remote Sensing, 4, p.15. DOI:10.4236/ars.2015.41002

Gong, W., Meyer, F., Webley, P.W., and Lu, Z., 2011. Methods of INSAR atmosphere correction for volcano activity monitoring. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), p.1654-1657. DOI:10.1109/igarss.2011.6049550

González, P.J., Singh, K.D., and Tiampo, K.F., 2015. Shallow Hydrothermal Pressurization before the 2010 Eruption of Mount Sinabung Volcano, Indonesia, Observed by use of ALOS Satellite Radar Interferometry. Pure and Applied Geophysics, 172, p.3229-3245. DOI:10.1007/s00024-014-0915-7

Gunawan, H., Budianto, A., Prambada, O., Mc-Causland, W., Pallister, J., and Iguchi, M., 2017. Overview of the eruptions of Sinabung eruption, 2010 and 2013-present and details of the 2013 phreatomagmatic phase. Journal of Volcanology and Geothermal Research, In press,p.1-17. DOI:10.1016/j.jvolgeores.2017.08.005

Hirschi, M., Seneviratne, S.I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O.B., Formayer, H., Orlowsky, B., and Stepanek, P., 2011. Observational evidence for soilmoisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, p.17-21. DOI:10.1038/ngeo1032

Iguchi, M., Ishihara, K., and Hendrasto, M., 2011. Learn from 2010 eruptions at Merapi and Sinabung volcanoes in Indonesia, Proceedings of Annuals of Disaster Prevention Research Institute. Kyoto University, Kyoto, p.1-10.

Iguchi, M., Nishimura, T., Hendrasto, M., Rosadi, U., Ohkura, T., Triastuty, H., Basuki, A., Loeqman, A., Maryanto, S., and Ishihara, K., 2012. Methods for eruption prediction and hazard evaluation at Indonesian volcanoes. Journal of Disaster Research, 7, p.26-36. DOI:10.20965/jdr.2012.p0026

Indrastuti, N., Nugraha, A.D., McCausland, W.A., Hendrasto, M., Gunawan, H., and Kusnandar, R., 2019. 3-D seismic tomographic study of Sinabung Volcano, Northern Sumatra, Indonesia, during the inter-eruptive period October 2010–July 2013. Journal of Volcanology and Geothermal Research, In Press. DOI:10.1016/j.jvolgeores.2019.03.001

Kriswati, E., Kuncoro, H., and Meilano, I., 2015. Low rate of Sinabung deformation inferred by GPS measurement, AIP Conference Proceedings. AIP Publishing, p.050007. DOI:10.1063/1.4915046.

Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., and Pepe, A., 2007. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure and Applied Geophysics, 164, p.637-661. DOI:10.1007/s00024-007-0192-9

Li, Z., Fielding, E.J., Cross, P., and Preusker, R., 2009. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. International Journal of Remote Sensing, 30, p.3343-3363. DOI:10.1080/01431160802562172

Li, Z., Muller, J.P., Cross, P., and Fielding, E.J., 2005. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research: Solid Earth 110. DOI:10.1029/2004JB003446.

Lu, Z., Masterlark, T., and Dzurisin, D., 2005. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. Journal of Geophysical Research: Solid Earth, 110(B2), p.1-18. DOI: 10.1029/2004JB003148. DOI:10.1029/2004jb003148

Martí, J. and Ernst, G., 2005. Volcanoes and the Environment. Cambridge University Press, 471pp.

Massonnet, D. and Feigl, K.L., 1998. Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, p.441-500. DOI: 10.1029/97RG03139

Mastin, L.G. and Pollard, D.D., 1988. Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. Journal of Geophysical Research: Solid Earth, 93, p.13221-13235. DOI:10.1029/jb093ib11p13221

Nakada, S., Zaennudin, A., Yoshimoto, M., Maeno, F., Suzuki, Y., Hokanishi, N., Sasaki, H., Iguchi, M., Ohkura, T., and Gunawan, H., 2017. Growth process of the lava dome/flow complex at Sinabung Volcano during 2013-2016. Journal of Volcanology and Geothermal Research, 17pp. DOI:10.1016/j.jvolgeores.2017.06.012

Nugraha, A.D., Supendi, P., Widiyantoro, S., Daryono, and Wiyono, S., 2018. Earthquake swarm analysis around Bekancan area, North Sumatra, Indonesia using the BMKG network data: Time periods of February 29, 2015 to July 10, 2017, AIP Conference Proceedings. AIP Publishing, p. 020092. DOI:10.1063/1.5047377

Nugroho, S.P., 2013. Riwayat Letusan Sinabung. Gema BNPB, 4, p.42-45.

Ozdarici, A. and Akyurek, Z., 2010. A comparison of SAR filtering techniques on agricultural area identification. Proceedings of ASPRS 2010 Annual Conference, California, p. 26-30.

Papageorgiou, E., Foumelis, M., and Parcharidis, I., 2012. Long-and short-term deformation monitoring of Santorini Volcano: Unrest evidence by DInSAR analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, p.1531-1537. DOI:10.1109/jstars.2012.2198871

Peng, Y., Shen, C., Wang, W.C., and Xu, Y., 2010. Response of summer precipitation over Eastern China to large volcanic eruptions. Journal of Climate, 23, p.818-824. DOI:10.1175/2009jcli2950.1

Rosen, P.A., Hensley, S., Zebker, H.A., Webb, F.H., and Fielding, E.J., 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research: Planets, 101, p.23109-23125. DOI:10.1029/96je01459

Saepuloh, A., Koike, K., and Omura, M., 2012. Applying Bayesian Decision Classification to Pi-SAR polarimetric data for detailed extraction of the geomorphologic and structural features of an active volcano. IEEE Geoscience and Remote Sensing Letters, 9, p.554-558.

Saepuloh, A., Koike, K., Urai, M., and Sumantyo, J.T.S., 2015a. Identifying surface materials on an active volcano by deriving dielectric permittivity from polarimetric SAR data. IEEE Geoscience and Remote Sensing Letters, 12, p.1620-1624. DOI:10.1109/LGRS.2015.2415871.

Saepuloh, A., Susanto, A., Sumintadireja, P., and Suparka, E., 2015b. Characterizing surface manifestation of geothermal system under Torrid Zone using Synthetic Aperture Radar (SAR) data, Proceedings of the World Geothermal Congress 2015. Melbourne, Australia, p.1-6.

Saepuloh, A., Urai, M., Aisyah, N., Sunarta, Widiwijayanti, C., Subandriyo, and Jousset, P., 2013. Interpretation of ground surface changes prior to the 2010 large eruption of Merapi volcano using ALOS/PALSAR, ASTER TIR and gas emission data. Journal of Volcanology and Geothermal Research, Merapi eruption, 261, p.130-143. DOI:10.1016/j.jvolgeores.2013.05.001.

Saepuloh, A., Wikantika, K., and Urai, M., 2015c. Observing lava dome roughness on Synthetic Aperture Radar (SAR) data: Case study at Mount Sinabung and Merapi - Indonesia, 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Presented at the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), p. 645-648. DOI:10.1109/APSAR.2015.7306289.

Schmincke, H.-U., 2004. Volcanism, 28. Springer Science & Business Media, 324pp.

Sigmundsson, F., Einarsson, P., and Bilham, R., 1992. Magma chamber deflation recorded by the Global Positioning System: The Hekla 1991 eruption. Geophysical Research Letters, 19, p.1483-1486. DOI:10.1029/92gl01636

Soussa, J.J., Ruiz, A.M., Hanssen, R.F., Bastos, L., Gil, A.J., Galindo-Zaldívar, J., and de Galdeano, C.S., 2010. PS-InSAR processing methodologies in the detection of field surface deformation-Study of the Granada basin (Central Betic Cordilleras, southern Spain). Journal of Geodynamics, 49, p.181-189. DOI:10.1016/j.jog.2009.12.002.

Sutawidjaja, I.S., Prambada, O., and Siregar, D.A., 2013. The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra. Indonesian Journal on Geoscience, 8, p.55-61. DOI:10.17014/ijog.v8i1.155

Topp, G.C., Davis, J.L., and Annan, A.P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16, p.574-582. DOI:10.1029/wr016i003p00574

Witra, T., Saepuloh, A., Harto, A.B., and Wikantika, K., 2017. Analyzing surface roughness models derived by SAR and DEM data at geothermal fields. Bulletin of Geology, 1, p.77-85. DOI:10.5614/bull.geol.2017.1.2.1

Wyrick, D.Y. and Smart, K.J., 2009. Dike-induced deformation and Martian graben systems. Journal of Volcanology and Geothermal Research, 185, p.1-11. DOI:10.1016/j.jvolgeores.2008.11.022

Zampieri, M., D’Andrea, F., Vautard, R., Ciais, P., de Noblet Ducoudré, N., and Yiou, P., 2009. Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. Journal of Climate, 22, p.4747-4758. DOI:10.1175/2009jcli2568.1

Zribi, M. and Dechambre, M., 2003. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing of Environment, 84, p.42-52. DOI:10.1016/s0034-4257(02)00069-x

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
Indonesian Journal on Geoscience by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Indexing Site :




Follow us on:

shopify visitor statistics
View My Stats