Tephra-stratigraphy and Ash Componentry Studies of Proximal Volcanic Products at Mount Tangkuban Parahu, Indonesia: An Insight to Holocene Volcanic Activity

Syahreza S. Angkasa, Tsukasa Ohba, Takumi Imura, Iwan Setiawan, Mega Rosana


DOI: 10.17014/ijog.6.3.235-253

Tangkuban Parahu Volcano is one of the most active volcanoes in West Java, Indonesia, although most of the recent eruptions were relatively mild (e.g. 2013 eruption). However, there is still little information from the volcanic products in the proximal area. Here, a new documentation from the proximal volcanic succession is provided, including tephra-stratigraphy, componentry analysis, and petrography of volcanic products. Detailed mapping of the proximal area shows that the volcanic products are predominantly composed of alternating fine-clay and coarse ash, lapilli tuff, and pyroclastic breccia within ten tephra units. Componentry of ash particles revealed the presence of five components, associated with hydrothermally altered lithics, oxidized lithics, coherent crystalline lithics, magmatic juvenile, and free crystal in entire eruptive products. These indicate that the subvolcanic hydrothermal system has been developed since the Holocene and associated with a continual introduction of magmatic intrusion. Petrographic observation shows the presence of hydrothermal minerals of quartz or silica accompanied by alunite and kaolinite, representing acidic alteration within the crater-conduit. The existence of a silicified zone indicates that the subvolcanic hydrothermal system played an essential role as a cap-rock of pressurized gas and steam at depth (200-500 m), whereas magmatic injection caused the vapour plume expansion. The observation concluded that the proximal volcanic succession captured the evidence of coupled phreatic and phreatomagmatic activities during the latest development of Mount Tangkuban Parahu.


Tangkuban Parahu; tephra-stratigraphy; Holocene; volcanic; proximal


Alvarado, G., Daniela, M., Pierfrancesco, D., Moor, J. M. D., and Geoffroy, A., 2016. Are the ashes from the latest eruptions (2010-2016) at Turrialba Volcano (Costa Rica) related to phreatic or phreatomagmatic events? Journal of Volcanology and Geothermal Research, 327, p.407-415. DOI:10.1016/j.jvolgeores.2016.09.003.

Arribas Jr., A., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineralogical Association of Canada Short Course, 23, p.419-454.

Barberi, F., Bertagnini, A., Landi, P., Principe, C., 1992. A review on phreatic eruptions and their precursors Journal of Volcanology and Geothermal Research, 52 (4), p.231-246. DOI:10.1016/0377-0273(92)90046-G

Browne P.R.L. and Lawless, J.V., 2001. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Science Review, 52, p.299-331. DOI:10.1016/S0012-8252(00)00030-1.

Cas, R.A.F. and Wright, J.V., 1987. Volcanic succession (modern and ancient). Allen and Unwin, London, 528pp.

Cashman, K.V. and Hoblitt, R.P., 2004. Magmatic precursors to the 18 May 1980 eruption of Mount St. Helens, USA. Geology, 32 (2), p.141-144. DOI: 10.1130/g20078.1.

Centre for Volcanology and Geological Hazard Mitigation, 2016. Database of volcanoes in Indonesia. CVGHM Report.

Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animation. Journal of Asian Earth Sciences, 20 (4), p.353-341. DOI: 10.1016?S1367-9120(01)00069-4

Hedenquist, J. and Taran, Y., 2013. Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions. Economic Geology, 108, p.1523-1540. DOI:10.2113/econgeo.108.7.1523.

Heiken, G. and Wohletz, K., 1985. Volcanic ash. University Presses of California, Chicago, Harvard and MIT, London, 285pp.

Henley, R.W. and Berger,B.R., 2011. Magmaticvapor expansion and the formation of highsulfidation gold deposits: Chemical controls on alteration and mineralization; Ore Geology Reviews, 39, p.63-74. DOI: 10.1016/j.oregeorev.2010.11.003.

Jamtveit, B., Svensen, H., Podladchikov, Y.Y., and Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz, C. and Petford, N. (eds) Physical Geology of High-Level Magmatic Systems. Geological Society of London, Special Publications. DOI:10.1144/GSL.SP.2004.234.01.15.

Kartadinata, M.N., Okuno, M., Nakamura, T., and Kobayashi, T., 2002. Eruptive history of Tangkuban Parahu Volcano, West Java, Indonesia: A preliminary report; Journal of Geography, 111, p.404-409.

Kartadinata, M.N., 2005. Tephrochronological study on eruptive history of Sunda-Tangkuban Parahu volcanic complex, West Java, Indonesia. Doctoral Dissertation, Kagoshima University.

Koesoemadinata, K., 1979. Database of volcanoes in Indonesia. Volcanological Survey Indonesia, Bandung, 820pp.

Lowenstern, J.B., van Hinsberg, V., Berlo, K., Liesegang, M., Iacovino, K., Bindeman, I., and Wright, H.M., 2018. Opal-A in glassy pumice, acid alteration, and the 1817 phreatomagmatic eruption at Kawah Ijen (Java), Indonesia. Frontiers in Earth Science, 6 (11), p.1-21. DOI:10.3389/feart.2018.00011)

Maeno, F., Nakada, S., Oikawa, T., Yoshimoto, M., Komori, J., Ishizuka, Y., Takeshita ,Y., Shimano, T., Kaneko, T., and Nagai, M., 2016. Reconstruction of a phreatic eruption on 27 September 2014 at Ontake Volcano, central Japan, based on proximal pyroclastic density current and fallout deposits. Earth, Planets, and Space, 68, article 82. DOI: 10.1186/s40623-016-0449-6.

Martini, M., 1996. Chemical characters of the gaseous phase in different stages of volcanism: precursors and volcanic activity. In: Scarpa, R. and Tilling, R. (eds), Monitoring and mitigation of volcanic hazards, Springer, Berlin Heidelberg, New York, p.199-219.

McPhie, J., Doyle, M., and Allen, R., 1993. Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Hobart, Tasmania. Centre for Ore Deposit and Exploration Studies, University of Tasmania, 198pp.

Minami, Y., Imura, T., Hayashi, S. and Ohba, T. 2016. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: correlation with porphyry copper systems. Earth, Planets, and Space, 68, p.173-180. DOI: 10.1186/s40623-016-0440-2.

Miyabuchi, Y., 2015. Identification of paleosols around volcanoes dominating long-term small ash emissions: a case study from Aso Volcano, Japan; Special section determination of the construction of an outcrop database to reveal Eruptive History, Bulletin of the Volcanological Society of Japan, 60, p. 173-180. DOI: 10.18940/kazan.60.2_173 (written in Japanese with English abstract).

Nasution, A., Kartadinata, M.N., Kobayashi, T., Siregar, D., Sutaningsih, E., Hadisantono, R., and Kadarsatia, 2004. Geology, age dating, and geochemistry of the Tangkuban Parahu

Geothermal Area, West Java, Indonesia. Journal Geothermal Resource Society of Japan.

Ohba, T., Taniguchi, H., Miyamoto T., Hayashi, S., and Hasenaka, T., 2007. Mud plumbing system of an isolated phreatic eruption at Akita Yakeyama volcano, northern Honshu, Japan. Journal of Volcanology and Geothermal Research, 161 (1), p.35-46. DOI: 10.1016/j.jvolgeores.2006.11.001.

Ohba, T. and Kitade, Y., 2005. Subvolcanic hydrothermal systems: Implications from hydrothermal minerals in hydrovolcanic ash. Journal of Volcanology and Geothermal Research, 145(3-4), p.249-262. DOI:10.1016/j.jvolgeores.2005.02.002.

Oikawa, T., Ohba, T., Fujinawa, A., and Sasaki, H., 2018. Geological study of phreatic eruptions. Journal of the Geological Society of Japan, 124 (4), p.231-250. DOI:10.5575/geosoc.2017.0071.

Oikawa, T., Mitsuhiro, Y., Setsuya, N., Fukashi, M., Jiro, K., Taketo, S., Yoshihiro, T., Yoshihiro, I., and Yasuhiro, I., 2016. Reconstruction of the 2014 eruption sequence of Ontake Volcano

from recorded images and interviews. Earth, Planets, and Space, 68 (article 79), p.1-13. DOI: 10.1186/s40623-016-0458-5.

Pardo, N., Cronin, S. J., Németh, K., Brenna, M., Schipper, C. I., Breard, E., Whitte, J.D.L., Procter, J., Stewart, B., Augustin-Flores, J., Moebis, A., Zernack, A., Kereszturi, G., Lube, G., Auer, A., Neall, V., and Wallace, C., 2014. Perils in distinguishing phreatic from phreatomagmatic ash: insights into the eruption mechanisms of the 6 August 2012 Mount Tongariro eruption, New Zealand; Journal of Volcanology and Geothermal Research, 286, p.397-414. DOI: 10.1016/j.jvolgeores.2014.05.001.

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H, Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J., 2013. 'IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years Cal BP'. Radiocarbon, 55 ( 4), p.1869-1887. DOI:10.2458/azu_js_rc.55.16947

Sanno, Y., Kagoshima, N., Takahata, Y., Hishio, E., Roulleau, D. L., Pinti, T., and Fischer, P., 2015. Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Scientific Report. DOI:10.1038/srep13069.

Silitonga, P.H., 1973. Geologic map of the Bandung Quadrangle, Java, scale 1:100.000. Geology Survey Indonesia, Ministry of Mines.

Soetoyo and Hadisantono, R.D., 1992. Geological map of Tangkuban Parahu Volcano/Sunda Complex Volcano, West Java. Centre of Volcanological and Geology Hazard (CVGHM), Indonesia.

Sunardi, E. and Kimura, J., 1998. Temporal chemical variation in late cenozoic volcanic rocks around Bandung Basin, West Java, Indonesia. Journal Mineralogy, Petrology, Economic Geology, 93, p.103-128.

Suryo, I., 1981. Report of the volcanic activity in Indonesia for the period 1961-1963. Bulletin of Volcanological Survey Indonesia, Bandung, 104,116pp.

Suryo, I., 1985. Report of the volcanic activity in Indonesia for the period 1964-1970. Bulletin of Volcanological Survey Indonesia, Bandung, 106,150pp.

Suzuki, Y., Nagai, M., Maeno, F., Yasuda, A., Hokanishi, N., Shimano, T., Ichihara, M.,Kaneko, T., and Nakada, S., 2013. Precursory activity and evolution of the 2011 eruption of Shinmoe-dake in Kirishima volcanoinsights from ash samples. Earth, Planets, and Space, 65, p.591-607. DOI:10.5047/eps.2013.02.004.

Syahidan, A., Suryantini, A., Susanto, A., and Nurdiana, A., 2015. Hydrothermal alteration study of Tangkuban Parahu Craters, and its implication to geothermal conceptual model. Proceedings of Indonesia International Geothermal Convention and Exbition, Jakarta.

Tregoning, P., Brunner, F.K., Bock, Y., Puntodewo, S.S., McCaffrey, R., and Genrich, J.F., 1994. First geodetic measurement of convergence across the Java Trench. Geophysical Research Letters, 21 (19), p.2135-2138. DOI:10.1029/94GL01856.

Van Bemmelen, R.W., 1949. The Geology of Indonesia, Vol. 1 A. Government. Printing Office, The Hauge.

White, N.C. and Hedenquist, J.W., 1995. Epithermal gold deposits: styles, characteristics, and exploration. SEG (Society of Economic Geologist) Newsletter, 23, p.1, 9-13.

Wohletz, K. and Heiken, G., 1992. Volcanology and Geothermal Energy. Berkeley: University of California Press, 432pp.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
Indonesian Journal on Geoscience by https://ijog.geologi.esdm.go.id/index.php/IJOG/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Indexing Site :




Follow us on:

shopify visitor statistics
View My Stats