Natural Compaction of Semarang-Demak Alluvial Plain and Its Relationship to the Present Land Subsidence

Dwi Sarah, Lambok M Hutasoit, Robert M Delinom, Imam A Sadisun

Abstract


DOI:10.17014/ijog.7.3.273-289

Land subsidence is the lowering of ground surface due to natural and/or anthropogenic processes. Land subsidence in the Semarang-Demak plain has been going on for more than thirty years, however the contribution of natural and anthropogenic causes is relatively unknown. The Semarang-Demak plain has only been formed recently, as a result of rapid sedimentation during the Holocene. The basin mainly consists of underconsolidated thick clay, vulnerable to excessive settlement due to its own weight and additional pressures. The rate of natural subsidence is quantified by modelling the delayed dissipation of measured overpressure and the resulting vertical deformation, resulting in natural compaction rate of less than 0.8 cm/year in Semarang City and more than 0.8 cm/year in Demak Regency. The subsidence computed for parts of the Semarang-Demak plain were compared to the measured geodetic rate, and the relative contributions of natural and anthropogenic causes are derived. Modelling results show that natural subsidence is more significant at the eastern part of the plain (Demak region) with compaction rate reaching 0.9 - 2.2 cm/year that counts for 48 - 92% of the total land subsidence.


Keywords


natural; anthropogenic; compaction; land subsidence; alluvial plain

References


Abidin, Andreas, H., Gumilar, I., Sidiq, T.P., Fukuda, Y., 2013. Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Geomatics, Nat. Hazards Risk 4, 226–240. https://doi.org/10.1080/19475705.2012.692336

Abidin, H.Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y.E., Deguchi, T., 2011. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 59, 1753–1771. https://doi.org/10.1007/s11069-011-9866-9

Andreas, H., Abidin, H.Z., Sarsito, D.A., 2017. Tidal inundation (“ Rob ”) investigation using time series of high resolution satellite image data and from insitu measurements along northern coast of Java (Pantura), in:

Sakakibara, M., Saepuloh, A., Kurniawan, I.A. (Eds.), 2nd Transdisciplinary Research on Environmental Problems in Southeast Asia. IOP Conf. Series: Earth and Environmental Science 71, Bandung. https://doi.org/10.1088/1755-1315/71/1/012005

Bakr, M., 2015. Influence of Groundwater Management on Land Subsidence in Deltas. Water Resour. Manag. 29, 1541–1555. https://doi.org/10.1007/s11269-014-0893-7

Biot, M.., 1941. General Theory of Three Dimensional Consolidation. J. Appl. Phys. 12, 155–165.

Chaussard, E., Amelung, F., Abidin, H., Hong, S.-H., 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015

Cui, Z.-D., Tang, Y.-Q., 2010. Land subsidence and pore structure of soils caused by the high-rise building group through centrifuge model test. Eng. Geol. 113, 44–52. https://doi.org/10.1016/j.enggeo.2010.02.003

Day, R.W., 2009. Foundation Engineering Handbook: Design and Construction with the 2009 International Building Code, 2nd ed. ed. The McGraw-Hill Companies, Inc., New York, San Francisco, Washington, D.C., Auckland, Bogotá, Caracas, Lisbon, London, Madrid, Mexico City, Milan, Montreal, New Delhi, San Juan, Singapore, Sydney, Tokyo, Toronto.

Demers, D., Leroueil, S., 2002. Evaluation of preconsolidation pressure and the overconsolidation ratio from piezocone tests of clay deposits in Quebec. Can. Geotech. J. 39, 174–192. https://doi.org/10.1139/T01-071

Erban, L.E., Gorelick, S.M., Zebker, H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9. https://doi.org/10.1088/1748-9326/9/8/084010

Erkens, G., Bucx, T., Dam, R., de Lange, G., Lambert, J., 2015. Sinking coastal cities. Proc. Int. Assoc. Hydrol. Sci. 372, 189–198. https://doi.org/10.5194/piahs-372-189-2015

Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H., Sawyer, D., 2008. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope , offshore Louisiana , Gulf of Mexico. Earth Planet. Sci. Lett. 269, 309–325. https://doi.org/10.1016/j.epsl.2007.12.005

Gambolati, G., Teatini, P., Tomasi, L., Gonella, M., 1999. Coastline regression of the Romagna region, Italy, due to natural and anthropogenic land subsidence and sea level rise. Water Resour. Res. 35, 163–184. https://doi.org/10.1029/1998WR900031

Geostudio, 2013. Stress-Deformation Modeling with SIGMA /W, July 2013. ed. GEO-SLOPE International Ltd., Calgary, Alberta, Canada T2P 2Y5.

Geostudio, 2012. Seepage Modeling with SEEP / W. GEO-SLOPE International Ltd., Calgary, Alberta, Canada T2P 2Y5.

Gumilar, I., 2013. Pemetaan Karakteristik Penurunan Muka Tanah (Land Subsidence) Berdasarkan Integrasi Metode GPS dan INSAR Serta Estimasi Kerugian Keekonomian Akibat Dampak Penurunan Muka Tanah (Wilayah Studi: Cekungan Bandung). Institut Teknologi Bandung.

Hutasoit, L.M., Pindratno, M.., 2004. Amblesan Tanah di DKI Jakarta, in: Permasalahan, Kebijakan Dan Penanggulangan Bencana Tanah Longsor Di Indonesia. Pusat Pengkajian dan Penerapan Teknologi Pengelolaan Sumberdaya Lahan dan Kawasan (P3TPSLK)- BPPT dan Hanns Seidel Foundation (HSF), Jakarta.

Kurniawan, A., 2011. Evaluasi Penurunan Muka Tanah Di Wilayah Kota Surabaya. Dari Data Pengamatan Global Positioning System Dengan Gamit/Globk. Institut Teknologi Sepuluh Nopember (ITS).

Lafuerza, S., Sultan, N., Canals, M., Frigola, J., Berné, S., Jouet, G., Galavazi, M., Sierro, F.J., 2008. Overpressure within upper continental slope sediments from CPTU data, Gulf of Lion, NW Mediterranean Sea. Int. J. Earth Sci. 98, 751–768. https://doi.org/10.1007/s00531-008-0376-2

Liu, S., Ju, J., Cai, G., Liu, Z., 2014. Stress History Estimation Method of Underconsolidated Soil by Partial Piezocone Dissipation Tests Stress History Estimation Method of Underconsolidated Soil by Partial Piezocone Dissipation Tests. Mar. Georesources Geotechnol. 32, 368–378. https://doi.org/10.1080/1064119X.2013.778376

Long, H., Flemings, P.B., Germaine, J.T., Saffer, D.M., 2011. Consolidation and overpressure near the seafloor in the Ursa Basin, Deepwater Gulf of Mexico. Earth Planet. Sci. Lett. 305, 11–20. https://doi.org/10.1016/j.epsl.2011.02.007

Marfai, M.A., Almohammad, H., Dey, S., Susanto, B., King, L., 2008. Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environ. Monit. Assess. 142, 297–308. https://doi.org/10.1007/s10661-007-9929-2

Marsudi, 2001. Prediksi Laju Amblesan Tanah di dataran Aluvial Semarang, Propinsi Jawa Tengah. Institut Teknologi Bandung (ITB).

Meckel, T.A., ten Brink, U.S., Williams, S.J., 2006. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys. Res. Lett. 33, 1–5. https://doi.org/10.1029/2006GL026300

Poedjoprajitno, S., Wahyudiono, J., Cita, A., 2008. Reaktivitas Sesar Kaligarang , Semarang. J. Geol. Indones. 3, 129–138.

Post, V.E., 2005. Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead? Hydrogeol. J. 13, 120–123. https://doi.org/10.1007/s10040-004-0417-2

Ramdhan, A.M., 2018. OVERPRESSURE IN INDONESIA’S SEDIMENTARY BASINS, VOLUME 1: ed. Penerbit ITB, Bandung.

Ramdhan, A.M., 2010. Overpressure and Compaction in the Lower Kutai Basin, Indonesia. Durham Unversity.

Saito, Y., Nishimura, A., Matsumoto, E., 1989. TRANSGRESSIVE SAND SHEET COVERING THE SHELF AND UPPER SLOPE OFF SENDAl , NORTHEAST JAPAN. Mar. Geol. 89, 245–258.

Sarah, D., Hutasoit, L.M., Delinom, R.M., Sadisun, I.A., Wirabuana, T., 2018. A Physical Study of the Effect of Groundwater Salinity on the Compressibility of the Semarang-Demak Aquitard, Java Island. Geosciences 8, 130. https://doi.org/10.3390/geosciences8040130

Satti, I.A., Wan Yusoff, W.I., Ghosh, D., 2015. Overpressure in the Malay Basin and prediction methods. Geofluids 16, 301–313. https://doi.org/10.1111/gfl.12149

Skempton, A.W., 1970. The consolidation of clays by gravitational compaction. Q. J. Geol. Soc. 125, 373–411.

Stanley, J.-D., Corwin, K.A., 2013. Measuring Strata Thicknesses in Cores to Assess Recent Sediment Compaction and Subsidence of Egypt’s Nile Delta Coastal Margin. J. Coast. Res. 288, 657–670. https://doi.org/10.2112/JCOASTRES-D-12A-00011.1

Sudaryanto, Wibawa, Y.S., 2013. Sejarah Perkembangan Kota Semarang (Jawa Tengah) di Masa Lalu dan Dampak Kehadiran Polutan Nitrat Pada Airtanah di Masa Kini. 2013 23, vol 23, no. 1. https://doi.org/http://dx.doi.org/10.14203/risetgeotam2013.v23.67

Suwarti, T., Wikarno, S., 1992. Peta Geologi Lembar Kudus, Jawa, Skala 1:100.000.

Taufiq Nz, A., 2010. Penyelidikan Konservasi Air Tanah Cekungan Air Tanah Semarang – Demak, Provinsi Jawa Tengah. Pusat Lingkungan Geologi, Badan Geologi, Bandung.

Taufiq Nz, A., 2009. Penelitian Hidrogeologi Daerah Imbuhan Air Tanah di Cekungan Air Tanah Semarang- Demak Provinsi Jawa Tengah (Tahap III). Bandung.

Taufiq Nz, A., Solihin, I., Wahyudin, 2010. PETA ZONA KONSERVASI AIR TANAH CEKUNGAN AIR TANAH SEMARANG - DEMAK TAHUN 2010. Bandung.

Teatini, P., Tosi, L., Strozzi, T., 2011. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Solid Earth 116, 1–10. https://doi.org/10.1029/2010JB008122

Thaden, R.E., Sumardirdja, H., Richards, P.W., 1996. Peta Geologi Lembar Semarang-Magelang, Jawa, Skala 1:100.000.

Tobing, M.H.., Syarief, E.., Murdohardono, D., 2000. Penyelidikan Geologi Teknik Amblesan Tanah Daerah Semarang dan Sekitarnya, Propinsi Jawa Tengah. Pusat Lingkungan Geologi, Badan Geologi, Bandung.

Törnqvist, T.E., Wallace, D.J., Storms, J.E. a., Wallinga, J., van Dam, R.L., Blaauw, M., Derksen, M.S., Klerks, C.J.W., Meijneken, C., Snijders, E.M. a., 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176. https://doi.org/10.1038/ngeo129

Van Bemmelen, R.., 1949. The Geology of Indonesia, Vol IA. ed. Martinus Nijhoff, The Hague.

Van Schaeck Mathon, F.M.A., 1975. ANALYSIS OF GROUNDWATER CONDITIONS ON THE BASIS OF EXISTING DATA: A study of the East Semarang- Demak Plain Central Java, in: Seminar On Groundwater Development For The Purpose of Irrigation. Surabaya, pp. 1–23.

Wardhana, D.D., Harjono, H., Sudaryanto, 2014. STRUKTUR BAWAH PERMUKAAN KOTA SEMARANG BERDASARKAN DATA GAYABERAT. Ris. Geol. dan Pertamb. 24, 53–64. https://doi.org/10.14203/risetgeotam2014.v24.81

Xu, Y.-S., Shen, S.-L., Ren, D.-J., Wu, H.-N., 2016. Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment. Sustainability 8, 573. https://doi.org/10.3390/su8060573

Yulianto, E., 2014. Fluktuasi Muka Air Laut Holosen Paparan Sunda Dari Perspektif Teras Laut & Palinologi. Penerbit Halima dan Pusat Penelitian Geoteknologi LIPI, Bandung.

Zeitoun, D.G., Wakshal, E., 2013. Land Subsidence Analysis in Urban Areas. Springer Environmental Science and Engineering. https://doi.org/10.1007/978-94-007-5506-2

Zoccarato, C., Minderhoud, P.S.J., Teatini, P., 2018. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-29734-7


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
Indonesian Journal on Geoscience by https://ijog.geologi.esdm.go.id/index.php/IJOG/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Indexing Site :

 

 

 

Follow us on:


shopify visitor statistics
View My Stats